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a b s t r a c t

Microbial community structure of biological soil crusts (BSCs) in successional stages of Shapotou desert
revegetation, northwest China, was assessed using Illumina MiSeq sequencing. Bacterial diversity and
richness were highest after 15 years, while those of fungi increased along a chronosequence of stabilized
dunes. Hierarchical clustering and principal coordinate analysis showed significant differences in bac-
terial communities between biocrusts and physical crusts, whereas fungal communities clustered into
four groups. Each age of BSCs exhibited the same dominant phyla at different proportions. The recovery
time for bacteria was more than 15 years, whereas that for fungi ranged from decades to centuries,
indicating that fungal richness might be a potential indicator for predicting the degree of BSC recovery.

© 2017 Elsevier Ltd. All rights reserved.
Biological soil crusts (BSCs) constitute one of the most impor-
tant landscapes (Belnap and Eldridge, 2003), having critical roles in
semi-arid and arid ecosystems (Eldridge and Greene,1994; Li, 2012;
Weber et al., 2016). In general, BSCs encounter the main succes-
sional stages in desert ecosystem:mobile sand, physical crust, algal,
lichen, and moss crust (Lan et al., 2012; Liu et al., 2006). Recent
estimates suggest that the recovery time of cyanobacterial soil
crusts is 15e50 years, whereas that of soil lichens range from de-
cades to centuries (Pointing and Belnap, 2012). However, there is no
information about when the microbial community structure can
reach a stable state in the recovery process of BSCs in desert eco-
systems. Bacteria and fungi are the major microorganisms in BSCs
(Bates et al., 2010; Gundlapally and Garcia-Pichel, 2006). During the
BSC successional process, microbial species composition and
community structure significantly change (Gundlapally and Garcia-
Pichel, 2006; Moquin et al., 2012; Zhang et al., 2016). Most of the
research on prokaryotic diversity of BSCs has mainly focused on
cyanobacteria-dominated biocrusts in arid and semi-arid regions
(Abed et al., 2010; Garcia-Pichel et al., 2001; Nagy et al., 2005;
Steven et al., 2013; Yeager et al., 2004). Recent studies on the
bacterial community structure of bryophyte or lichen-dominated
Lanzhou 730000, China.
crusts have indicated that lichen-associated communities encom-
pass wide taxonomically diverse bacteria (Bates et al., 2011;
Cardinale et al., 2008; Maier et al., 2014). However, studies on
fungal diversity during BSC development in desert zones are rela-
tively few (Abed et al., 2013; Grishkan et al., 2015). Thus, what are
the changes in microbial community composition and function in
different successional stages of BSCs? In addition, what is the effect
of these changes on the recovery process of BSCs in desert reveg-
etation in temperate zones?

To answer these questions, we selected BSCs in Shapotou
restored vegetation, located on the southeast fringe of Tengger
Desert, northwest China. The unirrigated vegetation system was
established in 1956 and extended in 1964, 1973, 1981, and later on
by planting shrubs (Li et al., 2007b; Liu et al., 2006). In the reveg-
etation area, BSCs varied with the ages of restored vegetation en-
closures, and bacteria and fungi were selected to study the BSC
microbial community. We hypothesized that the BSC microbial
community structure reaches a steady state after a certain devel-
opmental period, and is of particular importance to vegetation
stability and soil properties during the successional stages of
revegetation in desert ecosystems. We sampled BSCs at the
revegetation established in 1964, 1981, 1987, 2000, and 2010 in
November 2015, and named them according to fixed-sand time as
51 YR (51-year-old revegetation), 34 YR, 28 YR, 15 YR, and 5 YR,
respectively. Mobile sand (MS) was employed as a control (Fig. S1).
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In each revegetation, five crust cores (3.5-cm diameter) in each
plot (Fig. S1D) were sampled individually using a sterile trowel to
separate crusts from underlying soil. One sample comprised six
plots, yielding a mixture of 30 cores. Triplicate samples were
collected from each revegetation, transported to the laboratory,
immediately crumbled to pieces, sieved (1 mm) to remove stones
and plant roots, homogenized thoroughly, and stored at �70 �C for
subsequent analyses. Soil DNA extraction, PCR, and sequencing are
described in Supplementary methods. The raw sequence data were
processed using Trimmomatic software. Quality filtering, chimera
identifications, and operational taxonomic unit (OTU) clustering
(>97% similarity) were performed using USEARCH (version 7.1
http://drive5.com/uparse/). The sampling methods, experimental
protocols, and data-handling procedures are described in
Supplementary methods. The sequences obtained were deposited
into NCBI Sequence Read Archive database under accession number
SRA483274.

After processing, 18 libraries of bacterial 16S rRNA and eukary-
otic ITS rRNA genes were respectively constructed. The numbers of
OTUs detected in each sample of different ages were 1197e2307 for
bacteria and 156e441 for fungi (Table S1). Alpha diversity analysis
revealed the microbial richness and diversity. Rarefaction analysis
Fig. 1. Hierarchical clustering and phylogenetic community composition of bacteria (A) an
based on 97% similarity. The sequence percentage of the major bacteria (A) and fungi (B) in
34 YR, and 51 YR represent mobile sand, 5-, 15-, 28-, 34-, and 51-year-old BSCs, respective
showed a higher bacterial diversity in 15 YR, when compared with
that in 5 YR and MS (Figs. S2A and B); however, fungal diversities
increased with fixed-sand time (Figs. S2C and D). Community
richness estimation using ACE and Chao revealed a similar trend as
that of community diversity, which was further supported by
Shannon's index (Table S1). Thus, 15 YR is an important marker for
bacteria, with both diversities and richness reaching the highest
level. Conversely, while fungal diversities also increased, the rich-
ness improved in 51 YR. This is consistent with studies reporting on
recovery of soil properties and processes after sand-binding, with
annual soil properties recovery rates being higher in 0e14-year
revegetated sites than those in the oldest revegetated sites
(43e50 years) (Li et al., 2007a, b), suggesting that the BSC bacterial
community recovered quickly during the fastest soil properties
recovery phase, while the fungal recovery was longer, similar to soil
texture and nutrients recovery. Further investigation is needed to
determine the time required for fungi to reach the maximum
abundance and confirm the relationship between successional
stages of BSCs and fungal richness.

Hierarchical clustering and phylogenetic community composi-
tion analyses at genus level (Fig. 1) showed that BSCs clustered into
two and four groups for bacterial and fungal communities,
d fungi (B) at the genus level in BSCs of six different ages. Hierarchical clustering was
taxonomic composition was above 1% in at least one sample. MS, 5 YR, 15 YR, 28 YR,

ly.
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Fig. 2. Abundant phyla (>10% of total OTUs) and low-abundance phyla (>1% of total OTUs) of bacteria (A) and fungi (B) distributed in BSCs of six different ages. Data are defined at
3% OTU genetic distance. MS, 5 YR, 15 YR, 28 YR, 34 YR, and 51 YR represent mobile sand, 5-, 15-, 28-, 34-, and 51-year-old BSCs, respectively.
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respectively: Bacteria e short-term (MS and 5 YR, dominated by
physical crusts) and long-term (>15-year-old BSCs, dominated by
algae, lichen, or moss); fungi e MS, 5 YR, 15YR-28YR, and 34YR-
51YR). Principal coordinate analysis (Fig. S3) showed significant
differences in bacterial and fungal community compositions among
the groups. Metagenome analysis revealed the same dominant
phyla at different proportions in each age of BSCs (Fig. 2). Actino-
bacteria and Proteobacteria were the most dominant bacteria in all
biocrusts, except in physical crusts (Firmicutes was the most
dominant in MS and 5 YR), followed by Chloroflexi, Acidobacteria,
Firmicutes, and Cyanobacteria (Fig. 2A). Actinobacteria and Pro-
teobacteria are usually considered to be copiotrophic, being pre-
dominant in high C environments (Fierer et al., 2007). However,
these results differ from those reported for other crust types and
soils (Moquin et al., 2012; Zhang et al., 2016). Unexpectedly, Acti-
nobacteria and Cyanobacteria were dominant in BSCs of several
decades, despite their prevalence in early successional stages and
significant roles in initial crust development (Belnap and Lange,
2001). Furthermore, an unusually high proportion of Chloroflexi
suggested a general adaptation to arid environments and its
importance in the formation and persistence of BSCs in arid zones
(Lacap et al., 2011; Wang et al., 2015). Moreover, predominance of
Ascomycota in all samples (Fig. 2B) confirming that it is the
dominant fungal colonizer in all crusts, regardless of their origin
(Abed et al., 2013). The different proportions of dominant phyla
altered functions of microbial communities in the successional
process of BSCs, which in turn promoted BSC development.

In conclusion, the initial 15 YR was found to be critical for the
recovery of microorganisms of BSCs in Tengger Desert revegetation.
The recovery time for bacteria was more than 15 years, whereas
that for fungi ranged from decades to centuries, indicating that
fungi are more sensitive than bacteria. Thus, fungal richness could
be a potential indicator for predicting the degree of recovery of
BSCs in this zone.
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Supplementary data related to this article can be found at http://
dx.doi.org/10.1016/j.soilbio.2016.12.030.
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