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A B S T R A C T

The cold regions of western China are referred to as the “Asian Water Tower” and mainly include the Tibetan
plateau and surrounding mountains. Its prominent hydrological feature is multiphase water transformation,
which accelerates the water cycle and affects spatial and temporal patterns of water resources. Under the effect
of lengthening ablation periods and increased annual precipitation, multiphase water transformation is accel-
erating. There are three main manifestations characterizing the transformation from solid to liquid water in the
period since 1990: (i) the melting of glaciers has accelerated; (ii) the depth of permafrost active layers is in-
creasing and their maximum freezing depth is decreasing; and (iii) a marked decrease in snowfall and increase in
rainfall has been observed. The transformation from liquid to gaseous water was mainly concentrated on ac-
celerating evapotranspiration. The transformation from gaseous to liquid water was observed as enhanced
moisture recycling. The final hydrological effect of these transformations was observed in the change of the
runoff components, increase in runoff, and lake expansion. A theory of multiphase water transformation is
proposed, which is expected to contribute to the understanding of cold region hydrology in the future.

1. Introduction

Multiphase water transformation (MWT) refers to the frequent
conversions of bodies of water between the solid, liquid, and gaseous
states, which are the crucial links in the water cycle and have made
great effect on spatial and temporal patterns of water resources. In this
study, we consider the transformation from: solid to liquid water
characterized by glacier ablation, permafrost degradation, and de-
creased snowfall; liquid to gaseous water by evapotranspiration; and
gaseous to liquid water by moisture recycling. In cold regions, the
prominent hydrological feature is the coexistence of multiphase water
and its transformation. Fig. 1 shows a schematic diagram of the trans-
formation process. Solid water reserves include glaciers, snow cover,
and permafrost ground ice; liquid water mainly includes rivers, lakes,
marshes, soil water, plant water, and groundwater; while gaseous water
includes local evapotranspiration vapor and advection vapor. Under the
effect of a warming climate, the MWT process is accelerating, which is
affecting the hydrology, environment, water resources, ecology, and
occurrence of natural disasters, resulting in subsequent social effects.
Investigation of MWT will provide a new theoretical basis for ex-
plaining the balance of material and energy in cold regions, and for

understanding the relationship between MWT and global warming.
Quantifying the shrinkage of the cryosphere and the subsequent hy-
drological effects is expected to provide a new approach and direction
for the development of hydrology in cold regions. In addition, the water
balance and water resources are closely linked to changes in the MWT
process, which play a crucial role in determining the frequency, in-
tensity, and duration of water cycles in cold regions.

Based on data from the Intergovernmental Panel on Climate Change
(IPCC, 2013), the global combined land and ocean temperature showed
an increase of ~0.8 °C over the period 1901–2010 and about 0.5 °C over
the period 1979–2010 when described by a linear trend. The mid−/
high-latitudes and higher altitudes of the Northern Hemisphere showed
an overall increase in precipitation during 1900–2010. Considering
this, solid water is being transformed into liquid water at an increasing
rate. It is likely that a decreasing number of snowfall events are oc-
curring in most regions where increasing winter temperatures have
been observed (Marty, 2008; Choi et al., 2010). In addition, almost all
glaciers worldwide continue to shrink, as indicated by the measured
changes in glacier length, area, volume, and mass over time. Glaciers
have melted at an increasing rate over the last 35 years; the mean
glacier loss was 221 mm/a in 1980–1989, 726 mm/a in 2000–2009,
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and 836 mm/a from 2010 to 2014 (Arendt et al., 2002; Gardner et al.,
2011; Andresen et al., 2012; Yao et al., 2012a; IPCC, 2013; Zhao et al.,
2017). Furthermore, the extent of snow cover has decreased in the
Northern Hemisphere, especially in spring, and the extent of annual
mean snow cover decreased with statistical significance over the period
1967–2012, while no months had statistically significant increases
(Robinson et al., 1993; Valt and Cianfarra, 2010). In addition, perma-
frost temperatures have increased in most regions since the early 1980s,
although the rate of increase varied regionally; the temperature in-
crease for colder permafrost was generally greater than for warmer
permafrost, where the active layer thickness increased by a few cen-
timeters to tens of centimeters since the 1990s (Jorgenson et al., 2006;
Cheng and Wu, 2007; Li et al., 2012; IPCC, 2013).

In the case of transformation from liquid to gaseous water, evapo-
transpiration over land increased from the early 1980s up to the late
1990s (Jung et al., 2010; Wang et al., 2010; Wild et al., 2008); Wang
et al. (2010) found that global evapotranspiration increased by a rate of
0.6 W/m2 per decade for the period 1982–2002, and it has acted as a
constraint to further increases in global evapotranspiration after 1998
(Jung et al., 2010). The hydrological effect is also significant; while the
average runoff has not changed for the majority of rivers, year-to-year
variability has increased (IPCC, 2013). Currently, the warming of the
climate system is significant in China, where the annual mean tem-
perature has increased by 0.9–1.5 °C in the past century; the rate of
warming has increased since 1990 in the Tibetan Plateau (Ding and
Wang, 2016). Considering this background, MWT can be characterized
by the rapidly shrinking cryosphere (Kääb et al., 2007; Kabel et al.,
2012; Malatinszky et al., 2013; Liu et al., 2015a; Zhao et al., 2017). In
particular, the glacier and permafrost areas have been reduced by
18.6% and 10.1%, respectively, from the 1960s to 2010s in western
China (Qin et al., 2005; Ren et al., 2010; Liu et al., 2015b; Zhao et al.,
2017).

Multiphase water transformation has had a direct influence on hy-
drological processes and the water cycle in the studied region (Qin
et al., 2005; Yao et al., 2012b; Li et al., 2014). For example, meltwater
has been one of the main water sources and controls the seasonal pat-
tern of runoff, which affects use of water resources and ecological safety
patterns (Li et al., 2010a). Meanwhile, permafrost degradation has led
to an extensive recession of the alpine ecosystem and variations in
hydrological processes (Li et al., 2016a; Ma et al., 2016). MWT accel-
erates the water cycle and affects spatial and temporal distribution of
precipitation and evapotranspiration, soil water content, and river
runoff (Ganopolski and Rahmstorf, 2001; Qin et al., 2005; Li et al.,
2008; Kundzewicz, 2008; Sorg et al., 2012; Yao et al., 2012a; Li et al.,
2016b). These transformations also change the regional response of the
water cycle to global climate change, such as variations in lake and
runoff conditions (Chen et al., 2005, Chen and Han, 2010; Wang et al.,
2013; Wei et al., 2017; Wang et al., 2017). Thus, a thorough review of
MWT and its hydrological effect in cold regions is expected to con-
tribute to a comprehensive understanding of global warming and re-
gional climate responses.

The cold regions of western China mainly cover the Tibetan Plateau
and surrounding regions (Fig. 2), which are very important for hydro-
logical processes and water resources in the vast area of Central,
Eastern, and Southern Asia. This cold region is called the “Asian Water
Tower” and is the source of major Asian rivers, including the Yellow
River, Yangtze River, Salween River (Nujiang River in China), Mekong
River (Lancangjiang River in China), Bulamaputelahe River (Yarlung
Zangbo River in China), Ganges River, Indus River, Ili River, Tarim
River, Irtysh River, and Yeinisei River, which supply freshwater for the
survival of about 2 billion people. The newest report from the second
scientific expedition to Tibetan Plateau (2018) stated that the Asian
Water Tower is becoming unstable, and the water reserves are de-
creasing in the eastern and southern Tibetan Plateau, but increasing in

Fig. 1. The sketch of multiphase water transformation in cold regions of the western China.
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the western and northern regions. The structure and ratio of solid-to-
liquid water is becoming imbalanced owing to an increasing amount of
liquid water due to the accelerating melting of solid water (e.g., gla-
ciers, permafrost, and snow cover). The accelerating transformation
from solid to liquid water is increasing the risk of water shortages in
some areas, with a corresponding risk of natural disasters resulting from
e.g., glacial lake bursts, floods, and mud rock flows. Thus, a compre-
hensive study of MWT and its hydrological effects in the Asian Water
Tower region is urgent in order to provide a scientific foundation for
predicting future water resources and risk management.

Here, the climate background for MWT was analyzed for cold re-
gions of western China based on meteorological data from 135 stations.
MWT was explored using data for changes in glacier and permafrost
properties, snowfall, evapotranspiration, and moisture recycling.
Finally, the hydrological effects of MWT in study region are discussed.
This analysis is expected to provide a broad understanding of the fre-
quency, intensity, and duration of MWT and its hydrological effect on
the Asian Water Tower. The study also develops a new theoretical basis
for cold region hydrology.

2. Study region and data

In western China, the cold regions are mainly distributed in the
Tibetan Plateau and its adjacent mountains (Fig. 2), which have a wide
distribution of permafrost, glaciers, and snow cover, with a total area of
about 5.1 × 104 km2, stretching from the Pamir and HinduKushin in

the west to the Hengduan mountains in the east, and from the Altai
mountains in the north to the Himalayas in the south, with an average
elevation over 4000 m. This area is also referred to by scientists as the
Third Pole (Qiu, 2008), which is geomorphologically the largest and
highest mountain region on Earth. All peaks in the world over 7000 m
a.s.l are within the study region, including fourteen globally acknowl-
edged mountains over 8000 m a.s.l. (Yao et al., 2012b). Due to its high
altitude and large area, the region plays a significant role in the Earth's
climate system (Jin et al., 2005). The unique and complex interactions
of atmospheric, cryospheric, hydrological, geological, and environ-
mental processes have a large effect on the Earth's biodiversity, climate,
and water cycles. Furthermore, the region borders more than ten
countries and impacts > 2.0 billion people (Yao et al., 2012a), in-
cluding the Tibet autonomous region, Qinghai province, and some re-
gions of Gansu province, Xinjiang Uygur autonomous region, Sichuan
province, and Yunnan province of China. This cold region provides
resources, including water, pasture, and timber, as well as recreational
and tourism opportunities to the billions of people inhabiting the pla-
teau and surrounding regions (Yao et al., 2012a). Cryospheric processes
in the study region are reacting sensitively to global changes, including
glacier retreat, decrease in snow cover area, and permafrost degrada-
tion (Qiu, 2008).

To date, many studies have investigated the response of the cryo-
sphere to climate warming in western China; however, these studies
focused on a single river basin or single theme, such as glacier varia-
tions (Wu and Zhang, 2008; Liu et al., 2009; Yao et al., 2012b; Wan

Fig. 2. Study region and its location in the Asia and the earth.
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et al., 2014; Liu et al., 2015a; Li et al., 2014, 2016; Zhao et al., 2017). In
addition, no systematic analysis of MWT in cold regions of western
China has been performed. Therefore, in this study, we used meteor-
ological observations, snowfall data, and GLEAM actual evapo-
transpiration data, in conjunction with the findings of previous studies
of glaciers, permafrost, moisture recycling, runoff component, runoff
variation, and lake changes to review the climate background, fact, and
hydrologic effect of MWT in the study region. Details regarding the data
sources are shown in Appendix A.

3. Results and discussion

3.1. Climate background

3.1.1. Lengthening ablation period
Climate warming has been significant in the cold regions of western

China, where the annual average temperature has increased by 0.28 °C/
10a during 1961–2016. The daily temperature range (DTR) sig-
nificantly reduced by 0.18 °C/10a. This warming resulted in the gradual
extension of the ablation period and continuous reduction of the
freezing period; the number of ice days (ID) decreased by 2.35 d/10a
during 1961–2016, while the number of frost days (FD) reduced by 4.09
d/10a in the study region (Fig. 3). Meanwhile, the growing season
length (GSL) increased by 3.09d/10a at significant level (Fig. 3). The
annual mean temperature also showed a general warming trend over

the period of 1961–2016; in the study area, 134 stations exhibited a
significant increase, while a higher degree of warming occurred at
higher altitudes (Fig. 4). The DTR measured by 110 stations decreased,
where the amplitudes of variation of the data from 104 stations were
significant at the 0.05 level of significance (Fig. 4). The 26 stations
showing increasing DTR were mainly distributed at lower altitudes.
There were 130 stations for ID and 132 stations for FD that showed
decreased values, where the larger reductions mainly occurred at
higher altitudes (Fig. 4). About 131 stations for GSL presented an in-
crease during 1961–2016, where the larger increase also occurred at
higher altitudes (Fig. 4).

The increase in annual mean temperature in regions with an altitude
above 3000 m a.s.l. was 0.05 °C/10a higher than that for altitudes of
1000–3000 m a.s.l. Correspondingly, the ID, FD, GSL, and DTR values
for this high altitude region were 1.1 d/10a, 0.3 d/10a, 0.7 d/10a, and
0.02 °C/10a higher than in the lower altitude region, respectively. In
general, the degree of warming increased with increasing altitude. The
largest changes observed in the high-altitude regions (> 3000 m a.s.l.)
that contain a large volume of water trapped in glaciers, permafrost,
and snow cover were reflected by the clear extension of the ablation
period.

Furthermore, the warming has accelerated since 1990; the tem-
perature change was 0.39 °C/10a higher over the period of 1991–2016
than 1961–1990, while the corresponding decrease in DTR was 0.32 °C/
10a (Fig. 5). The decrease in the number of ID and FD during

Fig. 3. Temporal variation of climate index in study region.

L. Zongxing et al. Earth-Science Reviews 190 (2019) 33–57

36



1991–2016 was 1.58 d/10a and 4.47 d/10a higher than those during
1961–1990, while the increase in GSL was higher by 2.32 d/10a during
1991–2016 compared to 1961–1990 (Fig.5). These data indicate that
accelerating warming is a main driver for MWT in the studied region.

3.1.2. Precipitation increase with altitude rise
In cold regions of western China, the increase in annual precipita-

tion was also significant, with a rate of 2.52 mm/10a during 1961–2016

(Fig. 3). The R10mm, R20mm, and R25mm (number of days in a year
where daily precipitation exceeds 10 mm, 20 mm, and 25 mm, respec-
tively) increased by 3.29 d/10a, 2.24 d/10a, and 1.76 d/10a during
1961–2016 (Fig. 3), respectively. In the study area, 115 stations showed
an increase in annual precipitation, while only 32 stations showed
statistically significant increases at the 0.05 level over this time period
(Fig. 6). Stations showing reduced precipitation were mainly dis-
tributed in the Hengduan mountains. However, the changes in R10mm,

Fig. 4. Spatial changes of variational amplitudes for temperature index in study region.
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R20mm and R25mm were widespread, with 124, 121, and 119 stations,
respectively, showing a significant increase (Fig. 6), indicting the in-
creasing trend of extreme precipitation events. Furthermore, the pre-
cipitation, R10mm, R20mm, and R25mm values in region with altitude
above 3000 m a.s.l. were respectively 0.8 mm/10a, 4 d/10a, 2.9 d/10a,
and 2.5 d/10a larger than those in the region with altitude of
1000–3000 m a.s.l. The increasing precipitation and number of rainy
days indicates an increasingly humid climate in the cold regions of

western China.
However, the rate of precipitation increase reduced since 1990; the

increase was 4.88 mm/10a higher in 1961–1990 (5.08 mm/10a) than in
1991–2016 (0.2 mm/10a), while the precipitation fluctuated without a
clear trend after 1990 (Fig. 7). The rate of increase in R10mm, R20mm,
and R25mm also decreased after 1990; there was a decline in R10mm

Fig. 5. The variational amplitudes of temperature index between 1961 and
1990 and 1991–2016.

Fig. 6. Spatial changes of variational amplitudes for precipitation index in study region.

Fig. 7. The variational amplitudes of precipitation index between 1961 and
1990 and 1991–2016.
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from 7.4 d/10a to 2.5 d/10a, in R20mm from 5.18 d/10a to 2.43 d/10a,
and in R25mm from 4.5 d/10a to 2.3 d/10a over the period of
1961–1990 and 1991–2016, respectively (Fig. 7). These data confirmed
that MWT was mainly driven by accelerating warming in the study
region.

3.2. Facts of multiphase water transformation

3.2.1. Solid-liquid transformation
3.2.1.1. Glacier retreat. Glacier melting is the main transformation
from solid to liquid water in cold regions of western China. Based on
the first glacier inventory (measurements of glacier status between the
1950s to 1980s), there were 46,377 glaciers with the total glacier area
of 59,425 km2 and an approximate ice volume of 5600 km3 in western
China (Shangguan et al., 2004, 2007, 2009; Qin et al., 2004, 2005,
2016). The second glacier inventory (glacier status during 2004–2010)
confirmed that there were 48,571 glaciers with an area of 51,800 km2

and volume of 4300–4700 km3 (Liu et al., 2015b). Around 72% of the
total number of glaciers was within the Kunlun, Tianshan, and
Kalakunlun mountains, Nyainqntanglha mountains, and the
Himalayas; however, over 55% of the total glacier area and 60% of
the total ice reserves were concentrated in the Kunlun mountains,
Nyainqntanglha mountains, and Tianshan mountains, whiles around
82% of the glaciers in the study region have been shrinking over the
past fifty years (Liu et al., 2015a). Many factors have caused glacier
ablation, but precipitation and temperature were the most important,
where the summer temperature mainly controlled glacier melting and
winter precipitation mainly controlled the accumulation of new ice
(Wang and Su, 2003; Liu et al., 2003; Liu et al., 2006; Liu et al., 2015a).

Different regional climates, environment, and topography result in
local characteristics of glacier melting. The glacial areas measured for
various mountain ranges over the period of 1960s–2010s are shown in
Fig. 8, which are discussed here. In the northern Altai mountains, the
glacier area was 666.00 km2 in 1980, 614.30 km2 in 2000, and
584.00 km2 in 2010; however, in the southern Altai Mountains, the
areas were 633.90 km2 in 1972, 452.50 km2 in 1989, 386.10 km2 in
2000, and 329.00 km2 in 2011 (Wang et al., 2011a; Bai et al., 2012; Yao
et al., 2012c; Lv et al., 2012). In the Tianshan mountains, the glacier
area on the northern slope was 2214.80 km2 in 1990, 2078.70 km2 in
2000, and 1884.20 km2 in 2011, while the corresponding values were
4017.50 km2 in 1990, 3794.50 km2 in 2000, and 3490.9 km2 in 2011
for the southern slope (Li et al., 2004, 2006; Shangguan et al., 2009; Xu
et al., 2011; Wang et al., 2011b; He et al., 2014; Zhao et al., 2014; Xing
et al., 2017). In the Kalakunlun mountains, glaciers area has reduced by
237.55km2 during 1978–2015 (Xu, 2017). The glaciers area in the
western Kunlun mountains was 2986.70 km2 in 1990, 2984.20 km2 in
2000, and 2979.00 km2 in 2011, while the values for the eastern
Kunlun mountains were 2197.40 km2 in 1990, 2047 km2 in 2000, and
1933.1 km2 in 2010 (Li et al., 1998; Xu et al., 2006; Shangguan et al.,
2007, 2009; Zhang et al., 2010a, 2010b; Jiang, 2012; Li, 2014).

The glacier area in the Tanggula mountains decreased from
2062.19 km2 in 1990 to 1725.47 km2 in 2015 (Zhang et al., 2010a,
2010b; Wang, 2017a). In the western Nyainqntanglha mountains, the
glacier area was 931.50 km2 in 1979, 878.40 km2 in 1991, 852.00 km2

in 2000, and 737.60 km2 in 2011 (Bolch et al., 2010; Zhang et al.,
2010a, 2010b; Wang et al., 2012; Ji et al., 2014, 2015). In the Qilian
mountains, the glacier area was 2017.81 km2 in 1956, 1761.3 km2 in
1990, and 1597.1 km2 in 2010 (Liu et al., 2003; Wang et al., 2007; Cao
et al., 2010; Zhang et al., 2010a, 2010b; Wang et al., 2011c; Zhang
et al., 2012; Pan et al., 2012; Sun et al., 2015). In the Hengduan
mountains, the glacier area decreased from 252.1 km2 in 1974 to
227.2 km2 in 2010 in Gongga mountains (Liu et al., 2010; Pan et al.,
2011), and it decreased from 15.40 km2 in 1974 to 13.00 km2 in 2009
in the Yulong mountains (Wang et al., 2011d; Du, 2011). In the
northern Himalayas, the glacier area decreased from 8878.02 km2 in
1990 to 7594.03 km2 in 2010 (Ji, 2018). The glacier area in the

Longbasahu lake basin of the middle Himalayas decreased from
167.31 km2 to 157.43 km2 during 1980–2010 (Jiang, 2015), and it
decreased from 491.64 km2 to 410.87 km2 in the Luozha basin of the
eastern Himalayas during 1980–2007 (Li et al., 2011a). It decreased
from 2075km2 to 1985km2 during from 1970 to 2000 in Qiangtang
plateau (Wang et al., 2011e).The glacier area in the eastern Pamirs
showed an obvious decrease from 1780 km2 in 1972 to 1670 km2 in
2011 (Shangguan et al., 2004; Shangguan et al., 2007; Shangguan et al.,
2009; Zhang et al., 2010a, 2010b; Zeng et al., 2013). Fig. 8 shows that
more glaciers were retreating in the Qiangtang plateau and the Tina-
shan, Kunlun, Qilian, and Altai mountains with the largest glacier
cover, while fewer were retreating in the Yulong and Gongga moun-
tains with the smallest glacier area.

As shown in Fig. 9, the rate of glacier retreat in the studied region
increased after 1990. For the southern Altai mountains, the rate of re-
treat increased from 5.61 km2/a during 1972–1989 to 10.67 km2/a
during 1989–2011, while for the Tianshan mountains it increased from
35.9 km2/a during 1990–2000 to 45.3 km2/a during 2000–2010. In the
Qilian mountains, the retreat rate was 4.33 km2/a during 1956–1990,
whereas it increased to 8.17 km2/a during 1990–2010. The retreat rate
increased from 2.49 km2/a during 1970–1990 to 4.03 km2/a during
1990–2000 in the Qiangtang plateau. In the Tanggula mountains and
northern Himalayas, the retreat rate was 5.7 km2/a and 10 km2/a
higher in 1990–2000 compared to 2000–2010, respectively. In the
western Nyainqentanglha mountains, the retreat rate increased from
4.43km2/a during 1979–1991 to 7.04 km2/a during 1991–2011. In
addition, the retreat rate increased from 14.76 km2/a during
1974–1990 to 19.13 km2/a during 1994–2013. However, the retreat
rate decreased in the Kalakunlun, eastern Pamirs, and Kunlun moun-
tains by 2.85 km2/a, 2.42 km2/a, and 3.38 km2/a after 1990, respec-
tively.

3.2.1.2. Permafrost degradation. In cold regions, increases in the air
temperature can thermally degrade permafrost. Such changes have
widespread impacts on construction of infrastructure, resource
development, and ecosystem resilience and can increase the risks of
flooding, positive climate feedback effects, and the resulting damage to
infrastructure and the environment. Hence, the state of the permafrost
has the potential to affect the wellbeing of millions of people and the
sustainable development of the Tibetan plateau (Ran et al., 2018).

Permafrost degradation due to warming of the climate is another
type of transformation from solid to liquid water in cold regions of
western China. This degradation is characterized by a decreasing
maximum freezing depth and increasing permafrost active layer depth.
Fig. 10 shows these values for the studied region, which confirms
widespread permafrost degradation. Fig. 10a shows the average per-
mafrost active layer depth, Fig. 10b and c shows the maximum freezing
depthin in Tibet autonomous region and Qinghai Province over the
period of 1960s–2000s.

The permafrost active layer depth increased significantly over the
studied time period in the region. Based on continuous observations
from 8 stations along the Qinghai-Tibet road, the average permafrost
active layer depth increased from 252 cm in 2006 to 276 cm in 2011
with an average rate of increase of 4.7 cm/a (Fig.10a). Meanwhile, the
average rates of increase in permafrost temperatures at a depth of 15 m
and at the permafrost table were 0.018 °C/a and 0.015 °C/a, respec-
tively, during 2006–2011. The increase in the permafrost temperature
at these two depths in cold permafrost regions was higher than that in
warm permafrost regions (Liu et al., 2014). At some measurement sites
on the Tibetan plateau, the active layer depth increased at 7.8 cm/a
over the period of 1995–2010 (Wu and Zhang, 2010). The area-mean
active layer depth increased by 15 cm/10a on the Tibetan plateau
during 1981–2010 (Guo and Wang, 2013). In the headwaters of the
Urǜmqi river in the Tianshan mountains, the permafrost active layer
depth has been increasing since 1991, where the annual mean ground
temperature also increased from −1.6 °C in 1993 to −1.0 °C in 2008,
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and the estimated permafrost depth was 7.7 m less in 2008 than in
1992. Hence, it is concluded that the permafrost has recently been
degrading rapidly from bottom to top, especially since the start of the
21st century (Zhao et al., 2010). Satellite data indicates that the onset
dates of the spring thaw have advanced by 14 d, whereas the autumn
freeze date was delayed by 10 d in the Tibetan Plateau over the period
of 1988–2007 (Li et al., 2012b). The high rate of increase in the active
layer depth may have been the result of local disturbances as more
recent studies indicated rates of 1.33 cm/a for the period 1981–2010
and 3.6 cm/a for the period of 1998–2010 (Li et al., 2012a).

The maximum freezing depth also decreased in the studied region,
especially after 1990. The data from 16 stations in Qinghai province
showed that the maximum freezing depth continuously decreased by
4.8 cm/10a during 1961–2001, while the average depth decreased from
144 cm in 1961–1970 to 124 cm in 1990–2001 (Fig.10b). In the Tibet
autonomous region, the average maximum freezing depth measured at
17 stations also decreased with a rate of 5.5 cm/10a during 1961–2010.
The rate of decrease increased after 1990; it decreased by 14 cm from
1961 to 1990 to 1991–2010 (Fig. 10c), while the start date of thawing
was advanced with a rate of 2.1–5.2 d/10a during 1971–2010. These
variations were directly related to the significant increase in air and soil
temperature (Du et al., 2012). The maximum freezing depth in the
Tianshan mountains also decreased, but without a clear trend (Cheng
and Wu, 2007; Zhao et al., 2010; Du et al., 2014). In addition, the
maximum freezing depth decreased by 12 cm in the source region of the

Yellow river over the past three decades (Jin et al., 2010). The depth of
seasonally frozen ground in western China decreased by 20–40 cm since
the early 1960s (Li et al., 2008), while it decreased by up to 33 cm since
the middle of 1980s on the Tibetan plateau (Li et al., 2009). The per-
mafrost depth in the Qinghaihu lake basin also clearly decreased (Yuan,
2016). The area-mean maximum freezing depth of seasonally frozen
ground decreased by 34 cm/10a on the Tibetan plateau during
1981–2010, while the start dates for freezing of permafrost and sea-
sonally frozen ground were linearly delayed by 3.8 and 4.0 d/10a, re-
spectively, while the end dates of freezing advanced linearly by 5.9 and
4.6 d/10a, respectively, resulting in freeze durations that were shor-
tened by 9.7 and 8.6 d/10a, respectively (Guo and Wang, 2013).

Permafrost degradation was also confirmed by the decreasing per-
mafrost area on the Tibetan plateau, which can be divided into three
periods: a stable period (1980s); a period of rapid degradation (1990s);
and a period of slow degradation (in recent years) (Li, 2013; Feng et al.,
2016). The degradation was concentrated around rivers, lakes, and
valleys of the southern Tibetan plateau, especially the island permafrost
regions, while there was no obvious variation in the northern Tibetan
Plateau (Lu et al., 2017; Gao et al., 2017; Yang et al., 2017a; Wu et al.,
2018). During 1981–2010, the near-surface permafrost area decreased
by a rate of 9.20 × 104 km2/10a on the Tibetan Plateau (Guo and
Wang, 2013). Under climate warming, the total area of thermally de-
graded permafrost was ~153.76 × 104 km2 in 2010, corresponding to
88% of the permafrost area in the 1960s (Ran et al., 2018). The mean

Fig. 8. Spatial distribution of glacier area change in study region (x-coordinate is year, and y-coordinate is glacier area).
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lower boundary elevations of the very cold, cold, cool, warm, very
warm and likely thawing permafrost areas have increased by 88, 97,
155, 185, 161, and 250m, respectively. Over the past 40 years, the
permafrost area in the Qilian mountains has reduced by
2.09 × 104 km2, where most permafrost loss (1.19 × 104 km2) occurred
during the 1990s and 2000s (Zhang et al., 2014a). During 1972–2012,
833 km2 of permafrost was lost in the source region of the Yellow river
(Ma et al., 2017).

Simulations showed that the permafrost area continuously de-
creased on the Tibetan plateau over the past 50 years, with areas of
1.60 × 106, 1.49 × 106, 1.45 × 106, 1.36 × 106, and 1.27 × 106 km2

lost in the 1960s, 1970s, 1980s, 1990s, and 2000s, respectively.
Permafrost degradation has accelerated since the 1980s, with a total
area of ~3.3 × 105 km2 lost; this is equivalent to ~20% of the total
permafrost area in the 1960s (Cheng et al., 2012). Economic develop-
ment on the Tibetan Plateau is mainly concentrated around livestock
breeding and there is a very low level of industrialization (Hu, 2006).
The main influence of human activities on the environment has been
overgrazing, although localized and weak. Hence, it can be concluded
that the permafrost degradation is due to climate warming; the annual
mean temperature increased by 0.38 °C/10a since the 1980s, while the
ground temperature of the permafrost active layer also increased by
0.1–0.3 °C (Cheng and Wu, 2007). The permafrost degradation is con-
tinuing; the most recent report indicated that the permafrost under-
ground ice reserves over the Tibetan plateau was 12.7 × 1012 m3,

where ~2.2 × 1012 m3 is deposited in > 10 m thickness of permafrost.
It has been predicted that permafrost degradation could result in
300–600 × 108 m3/a of underground ice being converted into melt-
water in the next 50 years (Zhao et al., 2017). These variations describe
the persistent transformation from solid to liquid water by permafrost
degradation in the studied region.

3.2.1.3. Decreasing snowfall. The transformation from solid to liquid
water can be also characterized by decreasing snowfall and increasing
rainfall. Fig. 11 shows the average snowfall over the period of
1961–2016. In the studied region, snowfall increased and then
decreased during 1961–2016 (Fig. 11a). Specifically, the snowfall
showed a statistically increasing trend from 1961 to 1990 with
3.6 mm/10a (Fig. 11b) and decreasing trend during 1991–2016 with
1.9 mm/10a (Fig. 11c), with a maximum around 1990. Meanwhile, the
rainfall consistently increased by 2.52 mm/10a during 1961–2016
(Fig. 3).

The spatial distribution of the snowfall over the studied region is
shown in Fig. 12. Fig. 12a shows that 127 stations measured increasing
snowfall during 1961–1990, while the 31 stations that measured de-
creasing trends were mainly distributed in the Hendguan, eastern Qi-
lian, and western Kunlun mountains. During 1991–2016, 99 stations
showed a decreasing trend, while the 36 stations that showed an in-
creasing trend were mainly located in the eastern Tibetan plateau and
the Pamirs (Fig. 12b). Over the period of 1967–2012, little snowfall was

Fig. 9. Spatial distribution of glacier area retreat rate before 1990 and after 1990 in study region (x-coordinate is year, and y-coordinate is glacier area retreat rate).
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measured before the mid-1980s after the end of the 20th century, while
there was a period of high snowfall from the late 1980s to the late
1990s. The Tibetan Plateau showed a significant decrease in annual
mean snowfall days from 1981 to 2010, with a rate of 10.5 d/10a,
where an abrupt change occurred in 1997 (Chu et al., 2017), accom-
panied by a decrease in winter and spring snowfall (Hu and Liang,
2014). A highly significant correlation existed between the decrease in
snowfall days and the increase in air temperature. In addition, climate
warming resulted in significant snowfall reduction in Tianshan moun-
tains, especially at lower altitudes (Li et al., 2016). These data reflect
the transformation from solid to liquid precipitation, especially after
1990.

Snow cover is the most important component of the cryosphere,
with the largest seasonal and spatial variations over the Tibetan
Plateau, which plays an important role in the hydrology and energy
cycle for many Asian river basins. However, the snow cover depth in
cold regions of western China clearly reduced from the end of the 1990s
to 2005, attributed mainly to a decrease in snowfall and accelerated
ablation (Ma, 2008). Previous studies showed that spring snow depth
on the Tibetan plateau increased after the mid-1970s, but then

decreased after 2002, while atmospheric heating also experienced in-
terdecadal variations from cold to warm phases after 2002, which could
be linked to the decreasing snow depth (Zhu et al., 2015). There was
also a significant decrease in annual mean maximum snow depth on the
Tibetan Plateau with a rate of 0.55 cm/10a during 1981–2010, while an
abrupt decrease in snow depth also occurred around 1997 (Chu et al.,
2018).

A decrease in snow cover area was also significant in the studied
region. With increasing yearly average temperature, the snow cover
area decreased on Mount Everest during recent years (Bengtsson and
Berndtsson, 2003); some studies confirmed a positive correlation be-
tween the decrease in snow cover area and increase of cumulative
average temperature over the Tibetan Plateau (Li, 1996; Yao et al.,
2004; Wang et al., 2007; Chu et al., 2011). Between the 1960s and
1990s, the snow cover area on the Tibetan Plateau increased slowly,
and has been decreasing slightly over recent years (Wang, 2017b).
During 2001–2011, the seasonal snow cover area showed a significant
negative correlation with temperature and precipitation in spring and
summer, while the snow cover area showed a significant positive cor-
relation with precipitation in winter, highlighting the influence of

Fig. 10. Spatial distribution of the decreasing maximum freezing depth (the abbreviation is DMFD) and the increasing permafrost active layer depth (the ab-
breviation is IPAD) in study region (a); comparasion of the maximum freezing depth between 1961 and 1990 and 1991–2010 in Tibet autonomous region (b);
comparasion of the maximum freezing depth between 1961 and 1970 and 1990–2001 in Qinghai province (c).
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climate warming and confirming decreased snowfall (Li, 2007; Wang
et al., 2013). There was a very significant decrease in annual mean
snow cover days on the Tibetan Plateau with a rate of 4.81 d/10a
during 1981–2010, where 91.5% of the stations measured a decrease in
snow cover days (Chu et al., 2015). Similarly, the snow cover area
decreased in the Altai mountains during 2001–2014 (Chen et al., 2017),
and also in the Tibet autonomous region (Chu, 2016) and Qilian
mountains (Jiang and Ming, 2016). Both the decreasing snow depth and
snow cover confirmed the accelerating transformation from solid to
liquid precipitation due to climate warming.

3.2.2. Liquid-gaseous transformation
Under climate warming, enhanced evapotranspiration reflects the

accelerated transformation from liquid to gaseous water. Actual eva-
potranspiration (AE) is the amount of water evaporated from water and
soil surfaces and transpired by plants into the atmosphere. AE is an
important component of the hydrologic cycle and global energy bal-
ance, and plays a significant role in the biosphere, hydrosphere, and
atmosphere (Wang et al., 2012). Based on remote sensing data of the
studied area, AE showed a significant increase (R2 = 0.51) from 1980
to 2016 with a rate of 7.09 mm/10a (Fig. 13a), where the average
evapotranspiration was 317.88 mm. This increasing trend was con-
firmed by the spatial distribution of AE (Fig. 13b and Fig. 13c), which
showed the strongest effect in the Tianshan, Altai, and Qilian moun-
tains and the southern Tibetan Plateau. When the average AE value for
1980–2016 was subtracted from the 2016 value, a positive value was
determined, further confirming the increasing trend in the study region
(Fig. 13c).

Global AE also increased by 7.1 ± 1.0 mm/10a from 1982 to 2007

(Jung et al., 2010). Over the last 32 years, the average AE significantly
increased with a rate of 12.3 mm/10a in China, with an average value
of 397.5 mm (Yang et al., 2015). In the case of potential evapo-
transpiration (PE), the highest increase of 15–25 mm/10a was observed
for the northern region of Qinghai province, while an increase of
5–10 mm/10a was determined for the southeastern region (Liu et al.,
2016). The temperature, precipitation, and AE in the source region of
the Yellow river significantly increased by 0.34 °C, 11.4 mm, and
7.6 mm/10a, respectively, during 1970–2013 (Du et al., 2017). During
1981–2010, although PE decreased, AE increased over most areas of the
Tibetan Plateau (Yin et al., 2013). The PE in the Tianshan mountains
increased from 1960 to 2010 with a rate of 1.29 mm/10a, while this
rate increased after 1990 (Liu et al., 2015b). During 1961–2010, the
annual mean AE over the Tibetan Plateau was 543 mm, with a range of
147 to 687 mm; higher values were observed for the southern region,
while lower values were measured for the northern Tibetan Plateau. In
addition, the annual and seasonal mean AE showed a statistically sig-
nificant increase for most stations. The annual area-averaged AE in-
creased by 10 mm/10a, which tended to be affected by increasing soil
water supply associated with the retreat of permafrost, increase in
precipitation, and decrease in PE due to global warming (Zhang et al.,
2018). These variations highlight that enhanced liquid-to-gaseous
transformation is normal in the studied region under climate warming.

3.2.3. Gaseous-liquid transformation
The transformation from gaseous to liquid water is accelerating.

This can be confirmed by moisture recycling, which includes con-
tributions from terrestrial evaporation from the surface of soil and
water, and plant transpiration to precipitation. Previous studies showed

Fig. 11. Temporal variation of snowfall during 1961–2016 (a), 1961–1990 (b) and 1991–2016 (c) in study region.
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that moisture recycling had been a crucial part of local precipitation
under climate warming, resulting in enhanced evapotranspiration,
which has greatly affected the water cycle (Kong et al., 2013;
Schlesinger and Jasechko, 2014; Li et al., 2016a, 2016b). Local
moisture recycling played an essential role in maintaining an active
hydrological cycle in the cold regions of western China.

Local soil evaporation contributed to 9.32% of the total precipita-
tion in the Tianshan mountains, which was equivalent to 41.8 mm (Yao
et al., 2016). Zhang et al. (2014a) found that moisture recycling in the
Qilian mountains accounted for 20.76% of annual precipitation. Guo
and Wang (2014) proposed that moisture recycling accounted for 40%
of annual precipitation in the Tibetan Plateau; this contribution in-
creased with a rate of 3.1%/10a during 1979–2008 (not including the
western Tibetan plateau with an arid environment). Based on the
newest research (Li et al., 2016b), moisture recycling contributed
87 mm (accounting for 24%) to total annual precipitation during
May–September in the northern slope of the Qilian mountains; this
contribution increased with increasing altitude (Fig. 14). The con-
tribution from lake evaporation to local precipitation was 28.4–31.1%

in the Nam Co basin of the central Tibetan Plateau during summer (Xu
et al., 2011). In the Qinghaihu lake basin, the monthly contribution of
lake evaporation to basin precipitation was around 3–38%, with an
annual contribution of 23.42% (90.54 mm), the majority of which was
concentrated over summer (Cui and Li, 2015). In the oasis stations of
arid central Asia during the summer months, the contribution of re-
cycling moisture to local precipitation was ~16% at Urumqi, but < 5%
at small oases like Shihezi and Caijiahu (Wang et al., 2017b). Rudi et al.
(2010) calculated that moisture evaporating from the Eurasian con-
tinent was responsible for 80% of China's water resource; furthermore,
they showed that, due to the terrain, local moisture recycling was a key
process near the Tibetan Plateau.

Deuterium excess records in two ice cores from the northwestern
Tibetan Plateau showed that, on average, almost half of the precipita-
tion was provided by local moisture recycling over the past decades,
where the local moisture recycling ratio clearly increased, suggesting
an enhanced hydrological cycle. This could be due to the rapid in-
creases in temperature and precipitation, and changes in the land sur-
face (An et al., 2017). The data discussed in this section are evidence of

Fig. 12. Spatial distribution of snowfall trend during 1961–1990 (a) and 1991–2016 (b) in study region.
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the accelerating transformation from gaseous to liquid water under
climate warming in the studied region, which is expected to play an
important role in the future water cycle.

3.3. Hydrological effect of multiphase water transformation

3.3.1. The changed runoff component
Under MWT, glacier snow meltwater has been the main component

of runoff in cold regions of western China, as shown in Fig. 15. The
contribution of glacier snow meltwater to runoff was 13.4% in the
headwaters of the Shulehe river basin in the western Qilian mountains
with relatively large glacier covers (Zhou et al., 2015). Glacier snow
meltwater accounted for 6% of the outlet river water in the Taolaihe
river basin, while the contribution from supra-permafrost water was
15% (Li et al., 2016b). Supra-permafrost water and glacier snow
meltwater contributed an average of 28% and 7%, respectively, to the

outlet river water in Heihe river basin (Li et al., 2014, 2016c). Glacier
snow meltwater only accounted for 3% of the outlet river water in
Shiyanghe river basin, while the contribution from supra-permafrost
water was 20% (Li et al., 2016a). Glacier snow meltwater from Qiyi
glacier in the Qilian mountains increased by 0.41 × 106 m3 from 1960
to 1995 to 1996–2004, accompanied by a 0.41 °C temperature increase
in the glacial region (Song et al., 2010). Gao et al. (2011a, 2011b)
showed that the average glacier mass balance was −49.5 mm/a in the
Qilian mountains during 1961–2006; the average contribution of
meltwater to runoff was 14.1%, with an annual mean of 10.2 × 108 m3.

In the Tianshan mountains (Fig. 15), glacier snow meltwater ac-
counted for 57–64% of the flow of the Kumalak river at 14 km,
and > 57% in the Xiehela hydrology station (Kong and Pang, 2012).
Throughout 2012, the proportions of precipitation and glacier snow
meltwater were 17.6% and 14.7%, respectively, in the Urumqi river
(Sun et al., 2015a). The contributions of glacier snow meltwater and

Fig. 13. Temporal variation of actual evapotranspiration during 1980–2016 (a); spatial distribution of actual evapotranspiration that the value in 1980 minus the
average value during 1980–2016 (b); spatial distribution of actual evapotranspiration that the value in 2016 minus the average value during 1980–2016 (c).
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groundwater to the Yushugou river were 63% and 37%, respectively, in
the Tianshan mountains (Wang et al., 2015). In the Aksu river,
36–44.4% of the runoff was derived from glacier snow meltwater (Sun
et al., 2015b). Fan et al. (2015) confirmed that the contribution of
glacier snow meltwater to runoff was 43% in the Tizinafu river. Melt-
water increased by 563 mm water equivalent from 1959 to 1993 to

1994–2008 from Urumqi glacier No. 1, where the cumulative mass
balance reached up to −13,693 mm over the past 50 years, equivalent
to 3135.7 × 104 m3 (Sun et al., 2012). In the Tarim river basin, the
glacier mass balance was −139.2 mm/a (1961–2006), where the con-
tribution of glacier snow meltwater to river runoff was an average of
~41.5%; this contribution significantly increased after 1990 (Gao et al.,

Fig. 14. Spatial pattern of the precipitation sourced from moisture recycling in Qilian mountains.

Fig. 15. Spatial pattern of the contribution rate from glacier snow meltwater to runoff (the abbreviation is CRMTOR) in study region.
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2010a). The glacier melting depth in the upper reaches of the Yarkant
river was 807.7 mm/a (1961–2006), while the contribution of glacier
snow meltwater to river runoff was an average of ~51.3% over this
period, which increased to 63.3% after 2000 (Gao et al., 2010b). Han
et al. (2012) proposed that an increase of 2 °C in temperature would
increase meltwater discharge by 45.0% for Tuomuer-type glacier basins
in the Tianshan mountains. The contribution from glacier snow melt-
water to runoff was clearly higher in the Tianshan mountains than in
the Qilian mountains due to the larger glacier covers and ice volume.

In the Hengduan mountains (Fig. 15), hydrograph separation ana-
lysis showed that the contribution to runoff of glacier snow meltwater
varied from 63.8% to 92.6%, and that of precipitation varied from 7.4%
to 36.2% in the Heishui valley basin (Liu et al., 2008). In the small
catchment area of the Baishui river in the Yulong mountains, a two
component mixing model showed that and average of 53.4% of runoff
came from glacier snow meltwater during the wet season, while the
remainder was from precipitation (Pu et al., 2013). In addition, in the
small Hailuogou river basin, glacier snow meltwater accounted for
72.84 ± 8.03% of the outlet runoff (Xing et al., 2015). Li et al. (2010a)
showed that meltwater accounted for 54.6% of the annual mean runoff
from the Hailuogou glacier basin in the Gongga mountains during
1994–2004, while the contribution of meltwater from higher altitudes
to runoff increased in recent years. Within the Yanggong river basin in
the Yulong mountains, an increase of 90.9% in the average glacier snow
meltwater from 1979 to 1988 to 1994–2003 far exceeded the increased
precipitation (1.1%) and river discharge (78.7%) (Li et al., 2010b).
These results indicated the substantial contribution of meltwater to
water resources.

Glacier retreat in the Himalayas has also greatly contributed to in-
creased runoff in recent decades (Zhang et al., 2009; Li et al., 2011b).
Maurya et al. (2011) showed that glacier snow meltwater, precipita-
tion, and groundwater contributed to 32%, 53%, and 15% of runoff in
the Ganga river basin. Glacier snow meltwater accounted for 38%, 21%,
26%, 50%, and 53% of runoff in the catchment areas of the Yarlung
Zangbo river and its tributaries of Nianchu river basin, Lasa river basin,
Niyang river basin, and Yigongzangbu river basin, respectively (Fig. 15)
(Liu, 1999). In the Tibetan Plateau (Fig. 15), glacier snow meltwater
accounted for 18.5%, 1.3%, 6.6%, and 8.8% of runoff in catchment
areas of the Yangtze river, Yellow river, Lancangjiang river, and Nu-
jiang river during 1961–1989, respectively (Yang et al., 2000). The
runoff depth of the Dongkemadi river basin increased by 5.61 mm/a
during 1955–2008, where ~66% of the increased runoff was con-
tributed by glacier snow meltwater due to increased air temperature
(Gao et al., 2011a, 2011b). By 2009, the glacier area decreased to
20.83% and 34.81% of the 1970 values in the Tuotuohe river and Baqu
river basins, respectively, where the total meltwater supply in each
basin was 2.56 × 109 and 1.24 × 109 m3/a, respectively. This was due
to the increasing annual and summer stream flow during 1970–2009
(Wu et al., 2013).

The studies discussed here demonstrate that in cold regions of
western China, basins with glaciers, snow cover, and permafrost have
played a crucial role in regional water resources under global warming.
The Tibetan Plateau, including the sources of Asian rivers, and the Altai
and Tianshan mountains, are considered particularly significant for
water resource management in the future.

3.3.2. Runoff increase
Under MWT, the outlet runoff also changed in cold regions of

western China. With increasing precipitation, glacier ablation, and
permafrost degradation, the annual average outlet runoff for major
rivers in the Altai, Tianshan, Kunlun, and Qilian mountains, and the
Tibetan Plateau increased, as shown in Fig. 16. In the Altai mountains,
the runoff into the Barqin and Ulungar rivers increased with a rate of
1.87 × 108 m3/10a during 1957–2008 and 0.27 × 108 m3/10a during
1960–2010. As shown in Fig. 16, the 14 rivers sourced from the Tian-
shan mountains showed an increase in runoff during 1960s–2000s,

while only the Tekes river showed a decrease during 1956–2000. Based
on hydrological records of 8 rivers in the Kunlun mountains, the runoff
for 7 rivers increased during 1960s–2000s, while that of the Golmud
river decreased. In the Qilian mountains, the increase in runoff into the
Heihe and Shulehe rivers was significant. The runoff increased from
12.73 × 108 m3 (1990–2002) to 15.56 × 108 m3 (2003–2016) in the
Shiyanghe river basin (Li et al., 2017). During 1945–2014, annual
average outlet runoff consistently increased, from 14.16 × 108 m3

(1945–1949) to 20 × 108 m3 (2011–2014) in the Heihe river basin
(Cheng et al., 2017). In the western branch of the Heihe river basin,
annual average outlet runoff increased by 1.37 m3/s (1990s–2000s) in
the Taolaihe river basin (Xu et al., 2014). In the Shulehe river basin,
annual average outlet runoff increased by 0.91 × 108 m3/10a during
1958–2015, while it increased from 12.95 × 108 m3 in 1990 to
16.97 × 108 m3 in 2010 (Yang et al., 2017b). However, the runoffs into
the Datong, Huangshui, and Buha rivers decreased during 1960s–2010s
(Fig. 16).

In the Tibetan Plateau (Fig. 16), the runoff in the sources region of
the Yellow river increased during 1956–1972, decreased during
1973–2000, then increased again during 2001–2012 (Kong and Pang,
2012). In the source region of the Yangtze River, the runoff increased
with a rate of 6.67 × 108 m3/10a during 1956–2012, where the rate of
increase accelerated after 2000. The runoff increased with a rate of
0.5 × 108 m3/10a during 1956–2012 in sources region of the Lan-
cangjiang river basin (Kong et al., 2016). The runoff depth increased
with a rate of 3.3 mm/10a during 1956–2013 in the sources region of
the Yangtze river, which occurred in combination with increasing
precipitation leading to relatively stable water storage (Du et al., 2017).

Changes in precipitation and glacier snow meltwater caused by
climate warming may be major drivers of variations in streamflow in
sources region of the Yangtze and Lancangjiang rivers, while the var-
iations in the river flow of the Yellow river may be affected by pre-
cipitation, increased evaporation due to increased temperatures, and
anthropogenic effects (Chang et al., 2018). The results indicated that
precipitation, which mainly occurs during June–October (but varies in
some monsoon-affected basins), was the major contributor to increased
runoff in Tibetan Plateau basins (Liu et al., 2018a). In Yarlung Tsangpo
river basin (Nuxia hydrological station), no distinct increase in annual
streamflow during 1956–2013 was measured (Li et al., 2015). De-
creasing runoff in the upper Yellow river basin and some sub-basins of
Yalong river was attributed to the weakening east Asian monsoon (Liu
et al., 2018b).

These findings suggested that MWT has accelerated the water cycle
in cold regions of western China, indicated by the consistent increase in
streamflow, especially in the Altai, Tianshan, Kunlun, and Qilian
mountains, and in the sources region of the Yangtze and Lancangjiang
rivers. The impact of MWT on streamflow is complicated. On one hand,
annual evaporation could increase under warmer air conditions, which
would result in decreasing streamflow. On the other hand, rainfall and
meltwater can increase under MWT, which can increase streamflow (Li
et al., 2015). Therefore, further hydrological modelling studies should
be conducted to quantify streamflow changes and their uncertainty
across the cold regions of western China.

3.3.3. Lake expansion
Lakes carry important information regarding global climate change

and regional responses (Li et al., 2008; Wan et al., 2014) and are widely
distributed in cold regions of western China (Yao et al., 2012a). Lakes
affect the regional climate via the exchange of water and energy be-
tween the land and atmosphere, and also record past climate changes in
their sediments. This study analyzed 78 big lakes (with areas > 10 km2)
in cold regions of western China to explore lake changes during recent
decades. As shown in Fig. 17, most lake areas increased, other than
those of Aibihu (Tianshan mountains), Zhiguicuo, Yangzhuoyongcuo,
Xurucuo, Wurucuo, Renqingxiubucuo, Paikucuo, Lamucuo, Ma-
pangyongcuo, Laangcuo, Gerencuo, Dangreyongcuo, Cuona, and

L. Zongxing et al. Earth-Science Reviews 190 (2019) 33–57

47



Anglarencuo (southern Tibetan Plateau), Guozhuhu (western Tibetan
Plateau), and Dongtaijiwaner (northern Tibetan Plateau). The overall
lake area increased, with a mean value of 1.37 km2/a (and a range of
−3.92 to 14.82 km2/a); Overall, 63 of the 78 lakes were in expansion,
where these lakes are mainly located in the northern Tibetan Plateau,
Hoh Xil region, Qilian mountains, Qaidam basin, and Kunlun moun-
tains, while the shrinking lakes are mainly located in the southern Ti-
betan Plateau (Fig. 17).

The lake water level also increased in the studied region, with the
exception of Yangzhuoyongcuo, Paikucuo, Mapangyongcuo, Laangcuo,
Gerencuo, and Angzhicuo (southern Tibetan Plateau), and
Maerguochaka, Jingyuhu, Cuorendejia, and Cuodarima (northern
Tibetan Plateau). The lake water level change was between −1.480 and
1.038 m/a, with a mean value of 0.14 m/a (Fig. 17). The lakes with
reducing water levels were mainly located in the southern Tibetan
Plateau. From the 1970s to 2010s, the total lake area increased by
7240 km2 in the Tibetan Plateau (18% of the 1970 area), while lake
expansion mainly occurred during 2000–2010 (Zhang et al., 2017a).
Over the past 25 years, 261 new lakes were observed in the Tibet au-
tonomous region, and the total lake area increased from 24,161.1 to
30,549.2 km2. A severe decline in lake area in the period of 1990–1995
was observed, followed by a rapid increase during 1996–2006, then
stabilization during 2007–2013 (Liu et al., 2018a).

Under climate warming, most lakes in cold regions of western China
clearly expanded, while only a few lakes in the southern Tibetan

Plateau decreases in size (Song et al., 2013; Zhang et al., 2011; Zhang
et al., 2014b). Lake changes are mainly affected by the geology, climate
factors, and human activities (Zhang et al., 2017b), while climate fac-
tors showed the largest effect on lake changes in the studied region
(Zhang et al., 2011). Under MWT, increased rainfall results in lake
expansion, along with increased volumes of glacier snow meltwater and
supra-permafrost water under climate warming (Ding et al., 2006; Wan
et al., 2014; Chen et al., 2015). The main reason for the decreasing lake
volume in the catchments of the Yellow river, Junggar basin, Turpan
basin, Northern slope of the Karakorum mountains, and the Himalayas
was that water loss from evaporation (due to the increased tempera-
ture) exceeded the increase in runoff from precipitation (Kang et al.,
2010; Wan et al., 2014; Lin et al., 2017; Liu et al., 2018b). In addition,
glacier-fed lakes showed a much more rapid expansion than non-gla-
cier-fed lakes, which indicated that increasing glacier degradation was
one of the main factors contributing to the expansion of Tibetan Plateau
lakes (Yang et al., 2017a). In the Tibetan Plateau, lake variations agreed
well with the spatial pattern of precipitation changes during the 2000s;
however, glacier meltwater was shown to augment precipitation-driven
lake expansion in this region (Song et al., 2014).

From the 1970s to 2010s, precipitation, glacier snow meltwater, and
permafrost degradation have contributed about 74%, 13%, and 12%,
respectively, to lake expansion in the Tibetan Plateau (Zhang et al.,
2017a). Based on the analysis of Fang et al. (2016), increases in lake
areas were attributed to: glacier melting and increased precipitation in

Fig. 16. Annual change rate of runoff for major rivers in study region.
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the Naqu region; increased precipitation, higher temperatures, and a
decrease in evaporation in the Hoh Xil region; and rapid glacier melting
and increasing precipitation in the Qilian mountains. Although eva-
poration throughout the Tibetan Plateau has decreased in the past
40 years, changes in precipitation played the dominant role in lake area
changes (Yang et al., 2017b). The annual mean precipitation and
temperature in this region increased considerably and evaporation de-
creased in recent years, resulting in increased lake areas since the 2000s
in the Kunlun mountains (Song et al., 2014). Over the past 25 years,
minimum temperatures, evapotranspiration, and high precipitation
resulted in the rapid expansion of lake areas in the central Tibet au-
tonomous region. However, high temperatures, low precipitation, a
large amount of evapotranspiration, and melting of glaciers and per-
mafrost are possible drivers of lake expansion in the northern region
(Liu et al., 2018a). Hence, we conclude that MWT greatly contributes to
lake expansion under climate warming, especially increased rainfall,
glacier snow melting, and permafrost degradation.

4. Conclusions

As shown in Fig. 18, accelerating warming and a moist climate are
the main drivers of MWT in cold regions of western China. The annual
average temperature increased by 0.28 °C/10a during 1961–2016,
which gradually lengthened the ablation period and continuously
shortened the freezing period. The number of ID and FD significantly
decreased by 2.35 d/10a and 4.09 d/10a, respectively, while GSL in-
creased by 3.09 d/10a. Annual precipitation increased by 2.52 mm/10a
(with larger increases at higher altitudes), while R10mm, R20mm, and
R25mm also increased by 3.29, 2.24, and 1.76 d/10a, respectively
during 1961–2016. After 1990, warming sped up, while the increase in
precipitation slowed down.

All analyzed data showed that MWT processes are accelerating.
Solid water is rapidly transforming to liquid water via three processes:
(1) a clear retreat of glaciers which accelerated after 1990 in the
southern Altai, Tianshan, Qilian, and Tanggula mountains, the

Fig. 17. The variation of lake area and water level in study region.
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Qiangtang plateau, and the northern Himalayas; (2) permafrost de-
gradation, where the average permafrost active layer depth increased
by 24 cm (2006–2011) along the Qinghai-Tibet road, and the maximum
freezing depth decreased by 24 cm (1961–2001) in Qinghai province
and 14 cm (1961–1990 to 1991–2010) in the Tibet autonomous region;
(3) solid precipitation reduced gradually and liquid precipitation in-
creased. The snowfall decreased significantly by 1.9 mm/10a during
1991–2016. Considering the liquid to gaseous water transformation,
evapotranspiration significantly increased during 1980–2016
(7.09 mm/10a). Moisture recycling greatly contributed to local pre-
cipitation. The final hydrological effect of MWT is characterized by
three factors: (1) glacier snow meltwater was the main runoff compo-
nent under enhanced glacier and snow melting; (2) Runoff in the 39
rivers clearly increased, with an average rate of 0.31 × 108 m3/10a. (3)
The lake area and lake water level for the 78 big lakes also increased
(Fig. 18).

This review provides a theoretical basis for explaining the water
cycle, and enhances our scientific understanding of the mechanism and
hydrological effects of MWT in the Asian Water Tower. The cold regions
of western China profoundly affect Asian water resources and the local
ecosystem. Under accelerating MWT, runoff is expected to continually

increase, while lakes will expand for a certain period until they reach an
inflection point where the decreasing cryosphere meltwater cannot
provide for the demand in water resources, which would seriously
threaten the livelihoods of the population and the sustainable devel-
opment of the region. Therefore, future research should devote more
attention to the environmental effect of MWT in cold regions of western
China, which will elucidate the effect of an unbalanced and unstable
Asian Water Tower. In addition, it is critical to develop scientific stra-
tegies for controlling or reducing potential threats to water security and
ecological health in southern, central, and eastern Asia.
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Appendix A. Appendix

A.1. Meteorological data

The snowfall, daily precipitation, maximum temperature, and minimum temperature data were provided by the National Climate Center, China
Meteorological Administration (CMA) (available from http://www.nmic.gov.cn/). The modern nationwide network of weather observing stations in
China began operation in the 1950s. A total of 135 of the 158 stations in the original data set have maintained daily data since 1961. Of these, 23
were excluded because of data quality problems based on a quality control method previously reported (Li et al., 2012). The time span of the
meteorological data was mainly from January 1st 1961 to December 31st 2016 in order to ensure that the time period analyzed for all data sets was
the same. The distribution of the stations is uneven and very sparse in the western Tibetan plateau owing to the harsh observation environment.
Finally, 135 meteorological stations were selected, which were considered to have data of sufficient quality, provide a relatively even spatial
distribution, continuous records, and were built earlier than 1961. Detailed information about the stations, which are located at altitudes between
1012 m and 4900 m, is provided in Table.1. These stations belong to the WMO climate data exchange network and each has been allocated a WMO
number. In addition, the index for FD, ID, GSL, DTR, R10mm, R20mm, and R25mm were calculated based on a previous study (Li et al., 2012).

Fig. 18. The conceptual model of multiphase water transformation in cold regions of western China.
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Table 1
The selected weather stations in the study region.

WMO number Name Latitude Longitude Altitude(m)

52,323 Mazongshan 41.80 97.00 1770.4
52,436 Yumenzheng 40.27 97.00 1526
52,674 Yongchang 38.23 101.97 1976.9
52,679 Wuwei 37.92 102.67 1531.5
52,787 Wushaoling 37.20 102.87 3045.1
52,797 Jingtai 37.18 104.05 1630.9
52,889 Lanzhou 36.05 103.88 1517.2
52,983 Yuzhong 35.87 104.15 1874.4
52,984 Linxia 35.58 103.18 1917.2
52,986 Lintao 35.35 103.85 1893.8
52,993 Huining 35.68 105.08 2012.2
52,996 Huajialing 35.38 105.00 2450.6
56,074 Maqu 34.00 102.08 3471.4
56,080 Hezuo 35.00 102.90 2910
56,093 Minxian 34.43 104.02 2315
51,886 Mangya 38.25 90.59 2944.8
52,602 Lenghu 38.75 93.23 2770
52,633 Tuole 38.80 98.24 3367
52,645 Yeniugou 38.42 99.36 8320
52,657 Qilian 38.18 100.25 2787.4
52,707 Xiaozaohuo 36.80 93.47 2767
52,713 Dachaidan 37.85 95.24 3173.2
52,737 Delinha 37.37 97.24 2981.5
52,754 Gangcha 37.33 100.13 4301.5
52,765 Menyuan 37.38 101.62 7850
52,818 Geermu 36.42 94.59 2807.6
52,825 Nuomuhong 36.43 96.24 2790.4
52,836 Dulan 36.30 98.01 3191.1
52,842 Chaka 36.78 99.01 3087.6
52,866 Xining 36.72 101.75 2295.2
52,868 Guide 36.03 101.43 2237.1
52,876 Minhe 36.32 102.85 1813.9
52,908 Wudaoliang 35.22 93.01 4612.2
52,943 Xinghai 35.58 99.60 3323.2
56,004 Tuotuohe 34.22 92.24 4533.1
56,018 Zaduo 32.90 95.13 4066.4
56,021 Qumalai 34.13 95.48 4175
56,029 Yushu 33.02 97.00 3681.2
56,033 Maduo 34.92 98.12 4272.3
56,046 Dari 33.75 99.37 3967.5
56,065 Henan 34.73 101.60 4500
56,067 Jiuzhi 33.43 101.48 3628.5
56,125 Nangqian 32.20 96.25 3643.7
56,151 Banma 32.93 100.75 4530
56,038 Shiqu 32.98 98.01 4200
56,079 Ruoergai 33.58 102.97 3439.6
56,144 Dege 31.80 98.36 4184
56,146 Ganzi 31.62 100.00 3393.5
56,152 Seda 32.28 100.33 3893.9
56,167 Daofu 30.98 101.12 2957.2
56,172 Maerkang 31.90 102.23 2664.4
56,173 Hongyuan 32.80 102.55 3491.6
56,178 Xiaojin 31.00 102.35 2369.2
56,182 Songpan 32.65 103.57 2850.7
56,247 Batang 30.00 99.01 2589.2
56,251 Xinlong 30.93 100.32 4000
56,257 Litang 30.00 100.27 3948.9
56,357 Daocheng 29.05 100.30 3727.7
56,374 Kangding 30.05 101.97 2615.7
56,385 Emeishan 29.52 103.33 3047.4
56,459 Muli 27.93 101.27 2426.5
56,462 Jiulong 29.00 101.50 2987.3
56,475 Yuexi 28.65 102.52 1659.5
56,479 Zhaojue 28.00 102.85 2132.4
56,565 Yanyuan 27.43 101.52 2545
56,571 Xichang 27.90 102.27 1590.9
56,671 Huili 26.65 102.25 1787.3
55,228 Shiquanhe 32.50 80.01 4278.6
55,279 Banyi 31.38 90.00 4700
55,294 Anduo 32.35 91.01 4800
55,299 Naqu 31.48 92.01 4507
55,437 Pulan 30.28 81.13 4900
55,472 Shenzha 30.95 88.36 4672
55,493 Dangxiong 30.48 91.01 4200

(continued on next page)
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Table 1 (continued)

WMO number Name Latitude Longitude Altitude(m)

55,578 Shigatse 29.25 88.59 3836
55,591 Lhasa 29.67 91.01 3648.9
55,598 Zedang 29.25 91.48 3551.7
55,655 Nielaer 28.18 85.60 3810
55,664 Dingri 28.63 87.01 4300
55,696 Longzi 28.42 92.25 3860
55,773 Pali 27.73 89.01 4300
56,106 Suoxian 31.88 93.48 4022.8
56,116 Dingqing 31.42 95.36 3873.1
56,137 Changdu 31.15 97.12 3306
56,202 Jiali 30.67 93.13 4488.8
56,227 Bomi 29.87 95.48 2736
56,312 Nyingchi 29.67 94.23 2991.8
56,434 Chaou 28.65 97.25 2327.6
51,186 Qinghe 46.67 90.24 1218.2
51,288 Beitashan 45.37 90.35 1653.7
51,437 Zhaosu 43.15 81.01 1851
51,467 Baluntai 42.73 86.13 1739
51,477 Dabancheng 43.35 88.13 1103.5
51,542 Bayingbuluke 43.03 84.02 2458
51,567 Yanqi 42.08 86.36 1055.3
51,628 Akesu 41.17 80.12 1103.8
51,633 Baicheng 41.78 81.59 1229.2
51,644 Kuche 41.72 82.60 1081.9
51,701 Tuergate 40.52 75.24 3504.4
51,705 Wuqia 39.72 75.13 2175.7
51,709 Kashen 39.47 75.60 1289.4
51,711 Aheqi 40.93 78.25 1984.9
51,716 Bachu 39.80 78.36 1116.5
51,720 Keping 40.50 79.01 1161.8
51,730 Alaer 40.55 81.13 1012.2
51,804 Tashenkuergan 37.77 75.12 3090.1
51,811 Shache 38.43 77.13 1231.2
51,818 Pishan 37.62 78.13 1375.4
51,828 Hetian 37.13 79.59 1375
51,839 Minfeng 37.07 82.47 1409.5
51,855 Qiemo 38.15 85.36 1247.2
51,931 Yutian 36.85 81.37 1422
52,101 Balitang 43.60 93.01 1677.2
52,313 Hongliuhe 41.53 94.47 1573.8
56,533 Gongshan 27.75 98.47 1583.3
56,548 Weixi 27.17 99.13 2326.1
56,586 Zhaotong 27.35 103.72 1949.5
56,651 Lijiang 26.87 100.22 2392.4
56,684 Huize 26.42 103.28 2110.5
56,739 Tengchong 25.02 98.35 1654.6
56,748 Baoshan 25.12 99.12 1652.2
56,751 Dali 25.70 100.18 1990.5
56,768 Chuxiong 25.03 101.55 1824.1
56,778 Kunming 25.00 102.65 1886.5
56,786 Zhanyi 25.58 103.83 1898.7
56,875 Yuxi 24.33 102.55 1716.9
56,543 Zhongyi 27.83 99.47 3276.7
56,886 Luxi 24.53 103.77 1704.3
56,951 Lingcang 23.88 100.08 1502.4
56,444 Deqin 28.48 98.59 3319
52,856 Qiabuqia 36.27 100.62 2835
56,880 Yiliang 24.92 103.17 1532.1
55,680 Jiangzhi 28.92 89.36 4040
51,330 Wenquan 44.97 81.00 1357.8
52,118 Yiwu 43.27 94.47 1728.6
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A.2. Glacier data

This study reviewed change in the glaciers in western China based on data sourced from previous studies, as shown in Table 2.

Table 2
Data source of glacier area change from published literature.

Mountains Times Data sources

The north of Altai mountains 1980–2010 Bai et al., 2012; Wang et al., 2011a; Yao et al., 2012a; Lv et al., 2012;
The south Altai mountains 1972–2011 Bai et al., 2012; Wang et al., 2011b; Yao et al., 2012b;
The north of Tianshan moun-

tains
1989–2011 Li et al., 2004, 2006; Shangguan et al., 2009; Xu et al., 2011; Wang et al., 2011a;He et al., 2014

The south of Tianshan moun-
tains

1990–2011 Li et al., 2004, 2006; Shangguan et al., 2009; Xu et al., 2011;Wang et al., 2011b; Zhao et al., 2014; Xing et al., 2017;

Tanggula mountains 1973–2010 Zhang et al., 2010a, 2010b; Zhu, 2012;Wang, 2017a; Wang et al., 2017a;
The western Kunlun mountains 1990–2011 Li et al., 1998; Xu et al., 2006;Shangguan et al., 2007, 2009; Zhang et al., 2010a, 2010b; Li, 2014;
The eastern Kunlun mountains 1990–2010 Li et al., 1998; Xu et al., 2006; Shangguan et al., 2007; Shangguan et al., 2009; Zhang et al., 2010a, 2010b; Jiang, 2012;
Nyainqntanglha mountains 1979–2011 Bolch et al., 2010; Zhang et al., 2010a; Zhang et al., 2010b; Wang et al., 2012; Ji et al., 2014, 2015;
Qilian mountains 1990–2010 Liu et al., 2003;Wang et al., 2009;Cao et al., 2010; Zhang et al., 2010a, 2010b; Wang et al., 2011c; Zhang et al., 2012; Pan et al.,

2012;
Gongga mountains 1974–2010 Liu et al., 2010; Pan et al., 2011; Zhang et al., 2010a, 2010b; Li, 2015;
Yulong mountains 1974–2009 Wang et al., 2011a; Du, 2011
Middle Himalaya Range 1980–2010 Jiang, 2015
Eastern Himalaya Range 1980–2007 Li et al., 2011a
Pamirs 1972–2011 Shangguan et al., 2004; Shangguan et al., 2007; Shangguan et al., 2009; Zhang et al., 2010a, 2010b; Zeng et al., 2013;
The northern Himalayas 1990–2015 Ji, 2018
Qiangtang plateau 1970–2000 Wang et al., 2011a
Kalakunlun Mountains 1978–2015 Xu, 2017;

A.3. Permafrost data

Based on the previous studies (Wang et al., 2005; Du et al., 2012; Liu et al., 2014), we calculated variations in the maximum freezing depth at 33
sites and the permafrost active layer depth at 8 sites in the studied region in order to explore permafrost degradation.

A.4. Actual evapotranspiration data

In order to analyze variations in AE, we used global land-surface actual evapotranspiration (GLEAM) data from 1980 to 2016 (downloaded from
https://www.gleam.eu). GLEAM evapotranspiration data considers the influence of precipitation, surface soil moisture, and vegetation. This product
has high precision and resolution, and is now used in most similar studies.

A.5. Moisture recycling data

Moisture recycling refers to the contributions from terrestrial evaporation and transpiration to precipitation (Jasechko et al., 2013; Rios-Entenza
et al., 2014). It includes moisture evaporated from the surface of soil and water and moisture from plant transpiration (Davie, 2008), which provides
precipitation in local regions, forming part of the scarce water resources in arid regions (Kong et al., 2013). This study reviewed the contribution
from moisture recycling to precipitation in cold regions of western China based on data from previous research (Rudi et al., 2010; Xu et al., 2011;
Zhang et al., 2014a; Guo and Wang, 2014; Li, 2015;Yao et al., 2016; Wang et al., 2017a; An et al., 2017; Li et al., 2017).

A.6. Runoff data

The data of runoff for 39 rivers in the cold regions of western China were sourced from published studies, as listed in Table 3.
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A.7. Lake data

We reviewed changes in the areas and water levels for 78 big lakes (area > 10 km2) in the study region. The data was mainly sourced from the
research by Wang (2017a), Zhu et al. (2015), and Wu et al. (2017).
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